Archaeperidinium saanichi sp. nov.: A new species based on morphological variation of cyst and theca within the Archaeperidinium minutum Jörgensen 1912 species complex

Kenneth Neil Mertens a,⁎,1, Aika Yamaguchi b,⁎,1, Hisae Kawami c,1, Sofia Ribeiro e, Brian S. Leander b,c, Andrea Michelle Price f, Vera Pospelova f, Marianne Ellegaard e, Kazumi Matsuoka d

a Research Unit Palaeontology, Ghent University, Krijgslaan 281 s8, 9000 Gent, Belgium
b Department of Botany, University of British Columbia, #3529-6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4
c Department of Zoology, University of British Columbia, #3529-6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4
d Institute for East China Sea Research (ECSER), Nagasaki University, 1-14, Bunkyo-machi, Nagasaki, 852-8521, Japan
e Department of Biology, Faculty of Science, University of Copenhagen, Øster Farimagsgade 2D DK-1353 Copenhagen K, Denmark
f School of Earth and Ocean Sciences, University of Victoria, OEASB A405, P.O. Box 3065 STN CSC, Victoria, BC, Canada V8W 3V6

⁎ Corresponding author. Tel.: +32 92644613; fax: +32 92644608. E-mail address: kenneth.mertens@ugent.be (K.N. Mertens).
1 both authors have equal contributions to this paper.

Abstract

In this paper we describe a new species, Archaeperidinium saanichi sp. nov. within the Archaeperidinium minutum Jörgensen 1912 species complex. We examined the morphological variation of the cyst and motile stage by incubation experiments from sediment samples collected in coastal British Columbia (Canada), and compared it to closely related species. The theca of A. saanichi is differentiated from related species by overall size, the asymmetry of the intercalary plates and the right-sulcal plate (S.d.) not touching the cingulum. We provide a key to differentiate all closely related species. A. saanichi can be readily distinguished from A. minutum by a distinctively large cyst with a broad 2a type archeopyle and regularly spaced processes with relatively broad bases and aculeate process tips. Molecular phylogenetic analyses of large and small subunit (LSU and SSU) rDNA sequences demonstrated a close affinity of this species to A. minutum; however, the relatively high level of sequence conservation in dinoflagellate rDNA sequences made these particular markers inadequate for distinguishing one species from the other. Sediment-trap data suggest that A. saanichi has a preference for cooler temperatures and lowered salinities.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Free-living marine dinoflagellates form a large group of eukaryotes, currently encompassing approximately 1555 species (Gómez, 2005). Some dinoflagellates form resting cysts as part of their sexual cycle, often to overcome unfavorable conditions (e.g. von Stosch, 1973). Linking these cysts to their respective motile stage is important for both biological and geological studies. This was traditionally established by incubation of living cysts and identifying the emergent motile stage (Wall and Dale, 1968). The advent of molecular techniques has provided an important accessory tool by single-cell PCR techniques has provided an important accessory tool by single-cell PCR (Bolch, 2001; Matsuoka et al., 2006a; Takano and Horiguchi, 2006).

For the thecate heterotrophic genus Protoperidinium, which comprises 264 species (Gómez, 2005), only a few cyst-theca relationships have been established (e.g. Head, 1996). In recent years, further incubation studies have demonstrated more of these relationships for the genus Protoperidinium (e.g. Matsuoka et al., 2006b; Kawami and Matsuoka, 2009). Some of these cysts are distinctly round in shape, spine bearing, and brown in color; they are therefore called “spiny round brown cysts”. Two cyst-based genera have been erected to classify these species. The first, Echinidinium, was erected by Zonneveld (1997). These cysts open with a theropylic archeopyle (i.e., an angular slit that follows paraplate boundaries but without complete release of plates) (Matsuoka, 1988; Head et al., 2001). The second, Islandinium, was erected by Head et al. (2001) and opens with a saphopylic archeopyle (i.e., having a free operculum) (Matsuoka, 1988).

For the “spiny round brown cysts” with theropylic archeopyles, cyst-motile relationships have been established for only very few species: Protoperidinium monospinum (Zonneveld and Dale, 1994), Archaeperidinium minutum Jörgensen, 1912 (Wall and Dale, 1968; Fukuyo et al., 1977; Ribeiro et al., 2010), and Protoperidinium tricingularatum (Kawami et al., 2009). However, species assigned to other genera have also been shown to form “spiny round brown cysts”: Pheopolykrikos hartmannii (Matsuoka and Fukuyo, 1986,
retransferred to the genus Polykrikos by Hoppenrath et al., 2010) and Oblea acanthocysta (Kawami et al., 2006).

Archaeperidinium minutum Jørgensen, 1912 was first described by Kofoid (1907) from San Pedro Harbor, California, as Peridinium minutum Kofoid, 1907. Jørgensen (1912, p. 6) proposed the name Archaeperidinium minutum for this species, because he wanted to classify species based on the number of intercalary plates, which would place species of the then used name Peridinium with two intercalary plates within the genus Archaeperidinium; Peridinium was retained for species with three anterior intercalary plates. Abé, on the other hand, put more emphasis on the number and shape of the sulcal plates and proposed to classify Peridinium minutum within the Monovela group (Abé, 1936, p. 669–670; 1981, p. 304–307). After the reinstatement of the name Protoperidinium, the species was transferred to Protoperidinium minutum by Loeblich (1970, p. 905). Taylor (1976, p. 136–138) tried to compromise Jörgensen’s and Abé’s schemes by proposing three sections within the subgenus Archaeperidinium, one in which the girdle has no displacement, which he considered to correspond with the Monovela group of Abé. However, this is incorrect because Abé (1981, p. 305) considered the number of intercalary plates in the Monovela group to be either two or three. Recently, Yamaguchi et al. (2011) moved Protoperidinium minutum out of the genus Protoperidinium because of its separation from the remaining Protoperidinium species in phylogenies based on small subunit and large subunit (SSU and LSU) ribosomal DNA (rDNA) sequences and reinstated the name Archaeperidinium minutum Jørgensen, 1912. Archaeperidinium minutum is considered widespread, found in tropical to boreal areas (Okolodkov, 2005), which suggests the possible presence of multiple species within this species complex.

In this paper, we describe the theca and cyst of a new species, Archaeperidinium saanichi, through germinating spiny brown cysts from surface sediments from coastal British Columbia, obtaining LSU and SSU rDNA sequences, and studying sediment trap samples from Saanich Inlet and Effingham Inlet.

2. Materials and methods

2.1. Germination experiment

For incubation experiments, sediment samples containing spiny brown cysts were collected at three locations around southern Vancouver Island: (1) Camera Station near the VENUS (Victoria Experimental Network Under the Sea) sediment trap in Patricia Bay (Site A), (2) Oak Bay (Site B) and (3) Patricia Bay, near-shore (Site C) (Fig. 1, Supplementary Table 1). All samples were stored in plastic bags in a refrigerator at 4 °C. Sea-surface salinities and sea-surface temperatures were measured (Supplementary Table 1).

About 0.5–1 cm3 of wet sediment was immersed in filtered seawater and after 1 min of sonication using an As One™ US-2R sonic bath the sediment was rinsed through a 20 μm Sanpo™ stainless steel sieve using filtered seawater. From this residue, the cyst fraction was separated using a density method (sodiumpolytungstate (SPT) at a density of 1.3 g cm$^{-3}$ (Bolch, 1997)). Subsequently, single cysts were transferred using a micropipette to Nuncion 0.5 ml. microwells, and incubated with an irradiance of 80 mmol photons m$^{-2}$ s$^{-1}$, and a light:dark cycle of 16:8 h, filled with TL25 medium (Larsen et al., 1994) at temperatures and salinities comparable to the respective environments (Supplementary Table 1). Cysts were regularly checked for germination and observations of the cells were performed under an Olympus IX70 inverted light microscope (Olympus, Tokyo, Japan). Encysted and excysted cysts and vegetative stages were photographed and measured using an Olympus BX51 light microscope with a Nikon digital sight DS-1L module, a Nikon Eclipse 80i microscope and coupled Nikon DS Camera Head (DS-Fi1)/DS Camera Control Unit.

Fig. 1. A. Location of surface sediment sample sites along the NE Pacific margin containing cysts of A. saanichi (sites are numbered according to Pospelova et al., 2008), and the location of the Effingham Inlet sediment trap (site F). B. Map showing sampling locations for incubation experiments (site A to D), morphological measurements from the sediment trap in Saanich Inlet (also site A), and locations of surface sediments studied (sites are numbered according to Krepakevich and Pospelova, 2010). The location of Victoria Harbor used for sampling by Yamaguchi et al. (2011) is also shown (E).
DS-L2, and a Leica DM 5000 B equipped with a Leica DFC490 camera and Leica Application Suite 2.8.1 software, all with 100 × oil immersion objectives. For every cyst, the average of the longest and shortest body diameter was measured and the average of four long processes, when possible. Also the number of processes per 10 × 10 μm was counted by centering a 10 × 10 μm grid on the surface of the cyst and counting all the processes within this grid.

2.2. Study of cysts from sediment trap samples and surface sediment

For further morphological measurements, sediment trap samples from the VENUS sediment trap in Saanich Inlet and the inner basin trap in Effingham Inlet were investigated (Fig. 1, Supplementary Table 1). Palynological techniques were used for processing (Pospelova et al., 2004; Price and Pospelova, 2011). The samples were oven-dried at 40 °C and then treated with room temperature 10% hydrochloric acid (HCl) to remove calcium carbonate particles. Material was rinsed twice with distilled water and sieved through 125 μm and retained on 15 μm nylon mesh to eliminate coarse and fine material. To dissolve siliceous particles, samples were treated with 48–50% hydrofluoric acid (HF) at room temperature for 2 days, and then treated for 10 min with HCl (10%) to remove fluorosilicates. The residue was rinsed twice with distilled water, sonicated for 30 sec and finally collected on a 15-μm mesh. Aliquots of residue were mounted in glycerine jelly.

All measurements and light microphotographs were obtained by K.N.M., V.P. and A.Y., respectively using an Olympus BX51 with a Nikon digital sight DS-1 l 1 module, a Nikon eclipse 80i microscope and coupled Nikon DS Camera Head (DS-F1)/DS Camera Control Unit DS-L2 and a Leica Application Suite 2.8.1 software, all with 100 × oil immersion objectives. To determine the distribution of the studied spiny brown cysts, permanent slides of previously studied surface samples were reinvestigated, which included locations from coastal BC and from the NE Pacific (Supplementary Table 2).

2.3. Single-cell polymerase chain reaction (PCR) amplification and sequencing

For molecular investigations, two independent investigations were partaken. Four cells were isolated after germination of cysts isolated from Patricia Bay (Site C, Fig. 1) by A.Y. and one cell and one cyst were isolated from plankton from Cordova Bay (Site D, Fig. 1) by H.K using a slightly different method. These methods are detailed below. New sequences have been deposited in DDBJ/EMBL/GenBank under the accession numbers AB702985–AB702991.

2.3.1. LSU and SSU rDNA sequences of germinated cells by A.Y.

After germination of the cyst, one motile cell was isolated by micropipette under an inverted microscope, transferred to a glass slide with a vinyl tape frame (Horiguchi et al., 2000), and sealed with a cover glass.

Cells were examined with a Zeiss Axioplan 2 microscope equipped with differential interference contrast (DIC) and connected to a Leica DC 500 color digital camera. After photographic records had been made, each cell was rinsed by transferring it through a series of drops of differential interference contrast (DIC) and connected to a Leica DC 500 vinyl tape frame (Horiguchi et al., 2000), and sealed with a cover glass.

For molecular investigations, two independent investigations were partaken. Four cells were isolated after germination of cysts isolated from Patricia Bay (Site C, Fig. 1) by A.Y. and one cell and one cyst were isolated from plankton from Cordova Bay (Site D, Fig. 1) by H.K using a slightly different method. These methods are detailed below. New sequences have been deposited in DDBJ/EMBL/GenBank under the accession numbers AB702985–AB702991.

After observation, the motile and cyst were isolated and placed in a 200-μL tube containing 5 μL distilled water. The cells were dried up after heating to 95 °C for 5 min within the tube. The dried cells were broken using a clean glass stick. PCR amplification was carried out in a 20-μL reaction volume with the reagents according to the manufacturer's recommendation for KOD-Plus–DNA Polymerase (Toyobo, Osaka, Japan) on a GeneAmp® PCR System 9700 (Applied Biosystems Japan, Tokyo, Japan). The PCR reactions were performed in two steps. The primer pair used in the first round of PCR to amplify the LSU rDNA region were LSU primer SR1 and LSU primer, 28-1483R (Nakayama et al., 1996; Daugbjerg et al., 2000). The product of the first round of PCR was used as a template for the second round, where the following combinations of primer pairs were used: LSU and SSU primers; SR1 and SR5KAW, SR4 and SR8, and SR8KAW and SR12 (Nakayama et al., 1996; Kawami et al., 2006). The PCR product was purified using a Microcon YM-100 Centrifugal Filter Device (Millipore, Billerica, MA, USA), and the cycle-sequencing reaction was performed using an ABI PRISM BigDye™ Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA) following the manufacturer's protocol and sequenced with an ABI PRISM 310 Genetic Analyser.

2.3.2. SSU rDNA sequences of one cyst and one cell by H.K

After observation, the motile and cyst were isolated and placed in a 200-μL tube containing 5 μL distilled water. The cells were dried up after heating to 95 °C for 5 min within the tube. The dried cells were broken using a clean glass stick. PCR amplification was carried out in a 20-μL reaction volume with the reagents according to the manufacturer’s recommendation for KOD-Plus–DNA Polymerase (Toyobo, Osaka, Japan) on a GeneAmp® PCR System 9700 (Applied Biosystems Japan, Tokyo, Japan). The PCR reactions were performed in two steps. The primer pair used in the first round of PCR to amplify the SSU rDNA region were SSU primer SR1 and SSU primer, 28-1483R (Nakayama et al., 1996; Daugbjerg et al., 2000). The product of the first round of PCR was used as a template for the second round, where the following combinations of primer pairs were used: SSU and LSU primers; SR1 and SR5KAW, SR4 and SR8, and SR8KAW and SR12 (Nakayama et al., 1996; Kawami et al., 2006). The PCR product was purified using a Microcon YM-100 Centrifugal Filter Device (Millipore, Billerica, MA, USA), and the cycle-sequencing reaction was performed using an ABI PRISM BigDye™ Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA) following the manufacturer’s protocol and sequenced with an ABI PRISM 310 Genetic Analyser.

2.3.3. Sequence alignments and phylogenetic analyses

SSU and LSU rDNA sequences were aligned using MacClade 4 (Maddison and Maddison, 2000) and visual fine tuning based on the datasets of Yamaguchi et al. (2011). The final alignment of SSU rDNA dataset consisted of 61 taxa and contained 1487 base pairs (Archaepelidium saanichii). Perkinsus marinus was used as the outgroup species. The final alignment of the LSU rDNA dataset consisted of 48 taxa and contained 798 base pairs (A. saanichii), which region included the domains D1–D6, excluding the hypervariable part of domain D2. The apicomplexan Neospora caninum was used as outgroup. The GenBank accession numbers for all species used in the analyses are listed in Supplementary Table 3. The alignments are available from the authors upon request.

Phylogenetic trees for SSU and LSU rDNA were constructed using maximum likelihood (ML) and Bayesian analysis, respectively. For ML, the alignments were analyzed by GARLI version 0.951 (Zwickl, 2006). The Akaiki information criterion as implemented in jModelTest 0.1.1. (Posada, 2008) indicated that the General Time Reversible (GTR) model of nucleotide substitution, with a gamma distributed rate of variation across sites and proportion of invariable sites was the most appropriate evolutionary model for the SSU datasets. The parameters were as follows: assumed nucleotide frequencies are A = 0.2597, C = 0.1940, G = 0.2422, T = 0.3042; substitution rate matrix with A–C substitutions = 1.3778, A–G = 4.1789, A–T = 1.2039, C–G = 0.7401, C–T = 1.2039, G–T = 1.0000; proportion of sites assumed to be invariable = 0.1960 and rates for variable sites assumed to follow a gamma
distribution with shape parameter = 0.5730. For the LSU rDNA dataset, the GTR model of nucleotide substitution with a gamma distributed rate of variation across sites was chosen. The parameters were as follows: assumed nucleotide frequencies are $A = 0.2589$, $C = 0.1884$, $G = 0.2821$, $T = 0.2707$; substitution rate matrix with $A-C$ substitutions = 1.3322, $A-G = 3.3025$, $A-T = 1.0905$, $C-G = 0.6440$, $C-T = 6.8377$, $G-T = 1.0000$; rates for variable sites assumed to follow a gamma distribution with shape parameter = 0.4850. Bootstrap analyses for both datasets were carried out for ML with 100 replicates to evaluate statistical reliability. MrBayes version 3.1.2 was used to perform Bayesian analyses on both SSU and LSU rDNA datasets (Huelsenbeck and Ronquist, 2001). The evolutionary model used in Bayesian analyses for SSU rDNA dataset was the GTR model with gamma-distributed rate variation across sites and a proportion of invariable sites, and the GTR model with a gamma distribution for LSU rDNA dataset. The program was set to operate four Monte-Carlo-Markov chains (MCMC) starting from a random tree. A total of 17,500,000 generations (SSU) and 1,500,000 generations (LSU) were calculated with trees sampled every 100 generations. The posterior probabilities (PP) correspond to the frequency at which a given node was found in the post-burn-in trees.

3. Results

3.1. Germination experiments from coastal B.C. samples

Spiny brown cysts from samples from coastal B.C. were isolated and two species were identified: one large and one small. The cysts were incubated in in situ temperature and salinity conditions. Motile stage and cyst of the large species corresponded to a new species, Archaeperidinium saanichi, described below. The motile cells from cysts of the small species were similar with the motile cells identified as Archaeperidinium minutum by Yamaguchi et al. (2011), which were collected in Victoria Harbor, BC, Canada (Site E, Fig. 1). Because Yamaguchi et al. (2011) did not show the corresponding cyst, we describe the cyst below. Germinations were generally very fast, and took place after 1 or 2 days of incubation. Cells died relatively quickly a few days after germination and never divided.

3.2. Species description

SYSTEMATIC PALEONTOLOGY

Division DINOFLAGELLATA (Bütschli 1885)

Fensome et al., 1993

Class DINOPHYCEAE Pascher 1914

Subclass PERIDINPHYCIDA Fensome et al., 1993

Order PERIDINIALES Haeckel 1894

Family PROTOPERIDINIAE Fensome et al., 1993

Genus *Archaeperidinium* Jörgensen 1912 emend. A. Yamaguchi, Hoppenrath, Pospelova, T. Horiguchi & B.S. Leander 2011

Archaeperidinium saanichi Mertens, Yamaguchi, Kawami et Matsuoka (Plate 1, Figs. A–L) sp. nov.

Diagnosis: Motile cell: Length: 40.7 (45.3) 55.1 μm (n = 9), Width: 38.6 (43.0) 49.0 μm (n = 9). Tabulation formula: Po, X, 7′, 4′, 2′, 7″, 3′ + t, 6 s, 5′′, 2″′′. The motile cell is slightly ovoidal with an apical horn but no antapical extension. Plates 1a and 2a are hexa, 2a and 4′ are enlarged. S.d. plate does not touch the cingulum. Plates are microreticulate with scattered trichocyst pores.

Cyst (incubation): maximum central body diameter: 37.1 (45.0) 52.0 μm (n = 20), minimum central body diameter: 36.0 (43.0) 49.4 μm (n = 20), length of processes: 2.8 (5.4) 7.8 μm (n = 72). The cyst is spherical to subspherical, smooth and brown in color. If present, cell content typically has an orange hue. Numerous equidistant capitate, tapering, hollow processes which are never branched and have circular broad bases. Archeopyle theropylic and corresponds to the large 2a paraplate.

Holotype: Plate 1, Figs. A–L.

Type locality: Patricia Bay, Saanich Inlet, British Columbia, Canada (48° 25.508′, 123° 18.052′, 9 m water depth)

Etymology: The epithet reflects the name of the type locality of the species, Saanich Inlet.

3.3. Description

3.3.1. Morphology of motile cell

The motile cells are slightly ovoidal with an apical horn and no antapical extension (Plate 1, Fig. A), with the ventral side of hypotheca slightly less flattened (Plate 1, Fig. B). The cell content is pink in color and some cells have small orange pigment bodies underneath the thecal plates. The nucleus is located in the dorsal side of the epitheca. The microreticulate thecal plates carry trichocyst pores on the surface. Some of these pores are arranged parallel to the cingulum (Plate 1, Fig. C).

The plate arrangement of epitheca is asymmetrical. The circular apical pore plate (Po) is surrounded by a low collar formed by the raised edges of the second, third and fourth apical plates (2′, 3′ and 4′) (Plate 1, Fig. C). We could not confirm thecal boundaries of the canal plate (X) in this study. The first apical plate (1′′) is rhombic (ortho-type) and asymmetrical (Plate 1, Fig. D). The anterior sides of plate 1′ are shorter than the posterior sides. Plate 2′ is pentagonal (Plate 1, Fig. E; 4′ also but not shown) and plate 3′ is irregular quadrangle (Plate 1, Fig. C).

The two anterior intercalary plates are hexagonal and unequal in size (Plate 1, Figs. F–G). The first anterior intercalary plate (1a) is six-sided and located at the left side of the epitheca in dorsal view (Plate 1, Fig. G). The second anterior intercalary plate (2a) is twice the size of the 1a plate, and transversely elongated in the dorsal side of the epitheca (Plate 1, Fig. F).

The precingular series consists of seven plates. The first, third and seventh precingular plate (1′′′, 3′ and 7″′) are four-sided (Plate 1, Figs. D, G). The circular side of plate 1′′′ is shorter than that of plate 7″′. The second and the fourth precingular plates (2′ and 4″′) are five-sided (Plate 1, Figs. E–F). Plate 4′′ is wide and its contact with plate 2a is longer than its contact with plate 1a (F Plate 1, Fig. F).

The cingulum is slightly right-handed (ascending), lined with narrow lists (Plate 1, Fig. H). The long and narrow transitional plate (1) is positioned between the first circular plate (C1) and the anterior sulcal plate (S.a.) (Plate 1, Fig. H). Plate 1C is of similar width as plate 1′′′. The second circular plate (C2) is the widest of the cingular plate series. The third circular plate (C3) is of similar width as the fifth postcingular plate (5″′) (Plate 1, Fig. I).

The sulcus is flat and consists of four large plates. The S.a. is long and narrow and its anterior part intruded between plates 1′′′ and 7″′ (Plate 1, Fig. H). The right-sulcal plate (S.d.) does not reach the cingulum (Plate 1, Fig. H). The distinct accessory plate (fin) expands from the left side of the S.d. plate (Plate 1, Fig. J). This fin covers the sulcal area and extended posteriorly beyond the cell (Plate 1, Fig. J). The left sulcal plate (S.s.) is long and forms a J-shaped curve (Plate 1, Fig. H). The anterior part of S.s. connects with the S.a. and the transitional plate (1) (Plate 1, Fig. H). The posterior sulcal plate (S.p.) is asymmetrical V-shaped (Plate 1, Fig. H).

The plate arrangement of the hypotheca is also asymmetrical. The cells have five postcingular plates. The fifth postcingular plate (5″′) is wider than the first postcingular plate (1″′). The third postcingular plate (3″′) is five-sided and positioned below the 4′″ plate (Plate 1, Fig. K). Plate 3″′ and 4″′ have similar widths (Plate 1, Fig. K). The antapical series is composed of two plates (Plate 1, Fig. L).

The plate formula is thus Po, X, 7′, 4′, 2′, 7″, 3′ + t, 6 s, 5′′, 2″′, and the complete tabulation is illustrated in Figs. 2–4 (except for the plate X).

3.3.2. Dimensions

The motile cells measure 40.7 (45.3) 55.1 μm in length (including apical horn, stdev = 5.0, n = 9) and 38.6 (43.0) 49.0 μm in width (stdev = 3.6, n = 9).
3.3.3. Synonyms

Balech (1964a, as Peridinium minutum Kofoid, 1907, Plate 1, Figs. 1–10).

3.3.4. Morphology of cyst of A. saanichi

3.3.4.1. Description. The resting cysts are spherical to subspherical and dark brown when cell content is present and hazelbrown when empty (compare Plate 2, Fig. A and B). The living cysts have abundant orange granules (Plate 2, Fig. A). The wall is thin. The cyst surface is smooth and densely packed with numerous equidistant, non-tabular processes (15 (19.5) 22 processes per 10 × 10 μm, stdev=2.7, n=8). Sometimes bumps or reduced processes can be observed between processes (Plate 2, Fig. H). Processes are capitare, always ending with distal expansions and tapering, hollow and generally erect, although these can be slightly recurved. The processes are never fused or never branched at the end. The process bases are circular in cross-section (Plate 2, Fig. A, Fig. H). The archeopyle is intercalary and theropyle and corresponds to the large 2a paraplate (Plate 2, Figs. C–D, F).

3.3.4.2. Dimensions. Measurements of 20 cysts that germinated and gave rise to A. saanichi cells show that the maximum diameter of the central body varies between 37.1 (45.0) and 52.0 μm (stdev=3.8 μm, n=20), minimum diameter between 36.0 (43.0) and 49.4 μm (stdev=4.1 μm, n=20), and the length of processes between 2.8 (5.4) and 7.8 μm (stdev=1.0 μm, n=72) (Fig. 5). Similar measurements were obtained from cysts from sediment trap samples from Saanich Inlet and Effingham Inlet: the maximum diameter of the central body varies between 41.8 (49.0) 57.6 μm (stdev=3.9 μm, n=50), minimum diameter between 41.5 (47.3) and 57.6 μm (stdev=3.5 μm, n=50) and the length of processes between 2.5 (4.9) and 7.6 μm (stdev=1.0 μm, n=200) (Fig. 5).

3.4. Morphology of cyst of A. minutum sensu Yamaguchi et al. (2011)

3.4.1. Description

The cysts that were incubated from coastal B.C., are spherical to subspherical and dark brown when cell contents are still present and light brown when empty (compare Plate 3, Fig. A and Plate 3, Figs. B–F). Empty cysts also appear darker when they were covered in mucus (Plate 3, Figs. G–I). The living cysts have abundant reddish
granules (Plate 3, Fig. A). The wall is thin. The cyst surface is smooth and densely packed with numerous equidistant, non-tabular, processes (20 (24.3) 30 processes per 10 × 10 μm, stdev = 4.0, n = 10). Under light microscope, the processes appear distally solid with pericoels extending variable distance along process length, however as Ribeiro et al. (2010) showed by SEM observations, it is possible that processes are hollow. Sometimes bumps can be observed between processes (Plate 3, Fig. G) and is similar to polygonal patterns observed on the theca of P. minutum (Dodge 1983, his Fig. 8). Processes are acuminate or capitate with distal expansions, tapering and erect. The processes are never fused or branched at the end. The process bases are circular in cross-section (Plate 3, Fig. G, I). The archeopyle, which is the only expression of tabulation on the cyst, is intercalary and theropylic and corresponds to the 2a paraplate (Plate 3, Fig. C).

3.4.2. Dimensions
Measurements of cysts of A. minutum sensu Yamaguchi et al. (2011) from coastal B.C. that germinated show that the maximum diameter of the central body varies between 24.3 (30.2) and 33.1 μm (stdev = 2.4 μm, n = 15), minimum central body diameter between 24.0 (29.2) and 32.2 μm (stdev = 2.4 μm, n = 15), and the length of processes...
between 3.4 (5.1) and 7.2 \(\mu \text{m} \) (stdev=0.9 \(\mu \text{m} \), \(n = 60 \)) (Fig. 5). Similar measurements were obtained from cysts from sediment trap samples from Saanich Inlet and Effingham Inlet: the maximum diameter of the central body varies between 24.5 (29.7) and 33.9 \(\mu \text{m} \) (stdev=2.1 \(\mu \text{m} \), \(n = 50 \)), the minimum central body diameter between 24.4 (29.3) and 33.8 \(\mu \text{m} \) (stdev=2.1 \(\mu \text{m} \), \(n = 50 \)) and the length of processes between 2.0 (4.9) and 7.7 \(\mu \text{m} \) (stdev=1.0 \(\mu \text{m} \), \(n = 200 \)) (Fig. 5).

3.5. Molecular data and phylogeny

SSU rDNA. We obtained 1239 bp (A.Y. from theca), 1785 bp (H.K., from cyst) and 1762 bp (H.K., from theca) from three cells (Accession number: AB702985, AB702986, AB702987) and they did not have any differences. We used the longest sequence (Accession number: AB702986) for the phylogenetic analyses (Fig. 6). The SSU rDNA sequence of *A. saanichi* has slight substitutions among the sequences of *A. minutum* by Ribeiro et al. (2010) GQ227501 and Yamaguchi et al. (2011) AB564308 and AB564309 (2–4 base pairs out of 1556 base pairs). Both ML and Bayesian analyses show that *A. saanichi* and three sequences of *A. minutum* form a clade. This clade is a sister group to *Amphidiniopsis dragescoi* and *Herdmania litoralis* is positioned at the base of this clade. The species within the family Protoperidiniaceae fall into four well-supported clades (Fig. 6). These clades were concordant with Clades I-IV named by Ribeiro et al.
al. (2010) and Yamaguchi et al. (2011). The clade comprised of \textit{A. saanichi}, \textit{A. minutum}, \textit{A. dragescoi} and \textit{H. litoralis} is referred to as Clade IV (Fig. 6). The deep branches in the tree were short and without statistical support from either ML bootstrapping (<50%) or Bayesian PP (<0.95).

LSU rDNA. We obtained 1197, 1128, 1243 and 1195 base pairs from four germinated motile cells (Accession numbers: AB702988, AB702989, AB702990, AB702991) and they are identical. We used the longest sequence for the phylogenetic analyses (Fig. 7). The LSU rDNA sequence of \textit{A. saanichi} has six substitutions out of 1233 base pairs with \textit{A. minutum} by Ribeiro et al. (2010) (Accession number GQ227502). The LSU rDNA sequence of \textit{A. minutum} by Yamaguchi et al. (2011) contains three deletion sites comparing to the sequences of \textit{A. saanichi} and \textit{A. minutum} by Ribeiro et al. (2010). Except for these deletion and unambiguous sites, there are three substitutions out of 980 base pairs between \textit{A. saanichi} and \textit{A. minutum} by Yamaguchi et al. (2011). As result of ML and Bayesian analyses, \textit{A. saanichi} and two sequences of \textit{A. minutum} form a clade, and \textit{H. litoralis} is positioned at the base of this clade (Clade D, 97% ML bootstrap and 1.00 Bayesian PP). The clade formed by the same sections as clade I in the SSU rDNA analysis was well-supported (Clade A). Clade B comprised the section \textit{Oceanica} plus \textit{P. steidingerae} was moderately supported (61% ML bootstrap and 1.00 Bayesian PP).

Two diplopsalid species (\textit{Diplopsalis lenticula} and \textit{Preperidinium meunieri}), which previously formed a clade in Yamaguchi et al. (2011) and referred to as Clade C, do not cluster together in this study, as well as the in result of Ribeiro et al. (2010).

3.6. Distribution of cysts of \textit{A. saanichi}

Cysts of \textit{A. saanichi} have a wide geographical distribution in the NE Pacific (Supplementary Table 2, Fig. 1). This species is a common component of the dinoflagellate cyst assemblages in estuarine waters of southern British Columbia (Canada) and coastal waters on the NE Pacific, with an average relative abundance of ~1%. Cysts of \textit{A. saanichi} have been found in surface sediment samples corresponding to sea surface temperatures between 5 °C and 17 °C and sea surface salinities between 22 and 35 psu. The highest abundance of cysts of \textit{A. saanichi} has been recorded in surface sediments of Patricia Bay in Saanich Inlet (see Cyst type I in Price and Pospelova, 2011), where
it contributes from 5% to 20% of the cyst assemblages with an average concentration of 4100 cysts g⁻¹ (V.P., A.P. unpublished data), and where optimal conditions corresponded to winter sea surface temperatures between 5 °C and 10 °C and winter sea surface salinities between 23 psu and 28 psu.

4. Discussion

4.1. Comparison of motile stage of *A. saanichi* to other species

It is clear that the shape of the intercalary plates is a consistent feature used in the definitions of related species: species have been either described as having more or less symmetrical or asymmetrical intercalary plates. This characteristic can be used as a first step to compare this species to others. This feature is however not consistent for descriptions of *A. minutum* in the available literature, although the original description shows symmetrical intercalary plates (Kofoid, 1907). We think this characteristic should be used to distinguish *A. saanichi* (pronounced asymmetrical intercalaries) from other species in the *A. minutum* complex (symmetrical to slightly asymmetrical intercalaries). *Archaeperidinium saanichi* then corresponds to *A. minutum* depicted by Balech (1964a, as Peridinium minutum Kofoid, 1907, Plate 1, Figs. 1–10) and by Okolodkov (2005, as *Protoperidinium minutum* (Kofoid, 1907) Loeblich, 1970, p. 289, Fig. 12, 28). These are re-designated as *Archaeperidinium saanichi* and are slightly ovoidal, have the same pronounced asymmetry in the two intercalary plates and a S.d. that does not reach the cingulum.

Archaeperidinium saanichi differs from *A. minutum* sensu Fukuyo et al. (1977, as *Protoperidinium minutum* (Kofoid, 1907) Loeblich, 1970, p. 14, Figs. 3–10), sensu Ribeiro et al. (2010, as *Protoperidinium minutum* (Kofoid, 1907) Loeblich, 1970, p. 53, Figs. 22–23) and sensu Yamaguchi et al. (2011, as *Archaeperidinium minutum*, p. 107–109, Figs. 12–23, 30) by being more rounded, having only slight asymmetry in the subequal intercalary plates and having an S.d. that reaches the cingulum. The motile cells germinated from the small species of cysts from Saanich Inlet were all similar to specimens described by Yamaguchi et al. (2011), and we confirmed that they had subequal intercalary plates and a S.d. that reaches the cingulum. They are similar to the original description of *A. minutum* in Kofoid (1907, p. 310, Plate 31, Figs. 42–45). Although it is difficult to confirm whether the S.d. reaches the cingulum in the holotype of *A. minutum* by Kofoid (1907, p. 310, Plate 31, Figs. 42–45), we consider these to be examples of *A. minutum*. Other descriptions and/or depictions cannot be assigned to either species and need reinvestigation. For instance, specimens depicted by Nie (1939, Fig. 12, p. 592) could be representative of both *A. saanichi* and *A. minutum* as one depicted S.d. does, and another does not reach the cingulum and there is a pronounced asymmetry shown in the epithea. Balech (1964a, p. 25, not illustrated) and Taylor (1976, p. 137, Plate 33, Fig. 372) mention the occurrence of both types of asymmetry, but do not show the position of the S.d.. Several other publications that show and/or discuss this species do not address these characteristics: Kisselew (1950, p. 158, Fig. 239), Margalef et al. (1955, p. 95, Figs. i–j), Silva, (1957, p. 29, Plate 4, Figs. 7–8), Halim (1967, p. 741, Plate 9, Figs. 125–126), Wall and Dale (1968, p. 278, Plate 3, Fig. 32, Plate 4, Figs. 6–7), Wood (1968, p. 104, Fig. 311) and Hernández-Becerril (1991).

Other species with symmetrical intercalary plates can easily be differentiated on this basis from *A. saanichi*. *Peridinium monospinum* Paulsen, 1907 (p. 12, Fig. 11, copied in Paulsen, 1908, p. 41–42, Fig. 41) has been depicted in the original description as having two symmetrical subequal intercalary plates and all subsequent descriptions: Lebour (1925, p. 107, Plate XVI, Figs. 3a–3h) (copied by Peters 1930, p. 71, Fig. 38), Dangeard (1927, p. 347, Fig. 13a,b), Wailes (1928, p. 4, Figs. 42, 43), Silva (1949), (p. 344, Plate 5, Figs. 12–13) and Zonneveld and Dale (1994, p. 361, Fig. 1). Zonneveld and Dale (1994) reinstated this species because they observed a specific type of cyst and a typical reticulation on the theca, not observed on *A. minutum*. A significant problem with this species, remarked by Balech (1964b), is that in the original drawing by Paulsen (1907) the 1a is connected to 1b, which is not the case in any of the other depicted *P. monospinum*. This together with the fact that *P. monospinum* has been considered a synonym of *A. minutum* by a number of authors, makes all these subsequent descriptions questionable. *P. monospinum* clearly needs further investigation. Because of the distinctness of the species of Zonneveld and Dale (1994), we call this “*P. monospinum*” sensu Zonneveld and Dale (1994). This species is quite similar to

2 Such symmetry of the intercalaries is also shown by Schiller (1935), p. 141, which copies from previous publications (slightly asymmetrical specimens depicted in Zonneveld and Dale (1994) are badly copied from Schiller (1935)).
Properidinium aspinum Meunier, 1919 (p. 55, Plate 18, Figs. 33–36), which was considered a synonym of *P. monospinum* by Lebour (1925). However, this species cannot be *P. monospinum* because 1a does not touch 1′′. Therefore we consider this another valid species, which is characterized by distinct reticulations, a S.d. that reaches the cingulum, symmetrical intercalaries and epi- and hypotheeca of unequal size (which makes it different from “*P. monospinum*” sensu Zonneveld and Dale, 1994). *Protoperidinium constrictum* (Abé, 1936) Balech 1974, as described by Abé, 1936 (as Peridinium constrictum, p. 676–680, Figs. 75–83) also has symmetrical intercalaries and was considered a synonym of *P. monospinum* by Abé (1981, p. 307); however we consider it different from the holotype because it does not
have a 1a connected to 1″ and from the specimen reinstated by Zonneveld and Dale (1994) because it has a different size and a S.d. not reaching the cingulum. *Protoperidinium talhouense* (Fauré-Fremiet 1908) Balech 1994 as described by Fauré-Fremiet (1908, p. 227, Fig. 13) is also symmetrical but has an extra small precingular plate (8″) and different shape of 1′ than *A. minutum* (Balech 1994).

It also differs from other species that have been described with pronounced asymmetrical intercalary plates. It is different from *Protoperidinium aspidiotum* Balech, 1964b as described by Balech (1964b, Plate 11, Figs. 15–23, copied in Balech, 1988, p. 82, Plate 21, Figs. 1–3) which is smaller (35–39 μm x 34–35 μm), has a larger and more pointed fin and a S.d. plate that reaches the cingulum. It is also different from *Protoperidinium mendiolae* Balech, 1978 which is larger (53–71 μm x 53–72 μm in diameter), less rounded and pentagonal in shape and has a S.d. that reaches the cingulum (Balech, 1978, p. 5, Figs. 1–15). It also differs from *Protoperidinium mutsuense* (Abé 1936) Balech 1974 because that species has one large 1a.
Protoperidinium asymmetricum (Abé 1927) Balech 1974 also has such an enlarged 1a, but also has a prominent diagonal suture ridge in the epitheca (Abé 1927, as Spherodinium asymmetricum, p. 391, Figs. 11–13). A key can be used to differentiate the species (Fig. 8).

4.2. Comparative morphology of cysts

The cyst of A. saanichi can be easily distinguished from the cyst belonging to the motile stage of A. minutum sensu Yamaguchi et al., 2011 (small cyst) using morphological measurements of cyst body size, with a cut-off value of 37 μm (Fig. 5). Processes of both cyst types are of similar length (Fig. 5), being hollow, tapering and capitate, probably always ending in acuteate ends, same as observed by Ribeiro et al. (2010, p. 54, Figs. 4–5, p. 55, Fig. 13). Processes of cysts of A. saanichi are somewhat more expanded than cysts of A. minutum sensu Yamaguchi et al. (2011), clearly having wider bases (compare Plate 2, Figs. A–L and Plate 3, Figs. A–L), and on average a slightly lower number of processes. Furthermore, both cysts have a 2a type archeopyle type, although it is evident that the size of the archeopyle varies between these species, where the archeopyle is much larger in cysts of A. saanichi.

The cysts of A. minutum sensu Yamaguchi et al. (2011) have previously been described as cysts of Protoperidinium minutum by Price and Pospelova (2011, p.11, Plate 5, their Figs. 1–2). Cysts described by Ribeiro et al. (2010, as cysts of Protoperidinium minutum) are of nearly equal dimensions with a diameter of 25 (30) 34 μm (n = 27) and process lengths of 4 (6) 9 μm (n = 17). Fukuyo et al. (1977) described a similar small cyst (28–32 μm) with curved acuminate spines (3–5 μm) and a theropylic intercalary archeopyle. These cysts are very similar to cysts described by Yamaguchi et al. (2011), aside from the fact that no distal expansions are shown on the drawing by Fukuyo et al. (1977), as earlier remarked by Ribeiro et al. (2010). These are, however, easily overlooked using light microscopy, but SEM images always show the presence of these expansions (Ribeiro et al., 2010). Therefore, SEM investigations of these cysts are needed to investigate the possibility of ultrastructural characteristics to differentiate these types.

Ribosomal DNA sequences from dinoflagellates are relatively conserved, which limits the utility of these particular markers for delimiting closely related species from one another and for inferring close relationships within the group (e.g. Saldarriaga et al. 2004; Shalchian-Tabrizi et al. 2006). The nuclear encoded SSU and LSU rDNA sequences showed only slight differences between Archaeperidinium minutum and A. saanichi. Other examples of two morphologically distinct dinoflagellate species with identical or similar rDNA sequences have been documented by Logares et al. (2007) for the brackish dinoflagellate Scrippsiella hangoi and the freshwater species Peridinium...
aciculiferum and by Moestrup et al. (2008) for freshwater species Boriighiella dodgii and Boriighiella tenusissima. Logares et al. (2007) showed that the internal transcribed spacer regions (ITS1, ITS2), SSU, and partial LSU rDNA sequences between S. hangoii and P. aciculiferum were identical, despite their pronounced morphological differences. However, genetic separation of the two species was indicated from an almost 2% sequence divergence of the mitochondrial cytochrome b gene, in addition to differences in the amplified fragment length polymorphism (AFLP) pattern. Moestrup et al. (2008) showed that the LSU rDNA sequences of B. dodgii and B. tenusissima had only slight genotypic diversity, although they are morphologically very different. Logares et al. (2007) concluded that identical rDNA sequences in S. hangoii and P. aciculiferum could be the result of rapid divergence where time has been too short for any neutral fixations in the populations. In light of this hypothesis by Logares et al. (2007), Moestrup et al. (2008) suggested that enough time has passed since B. dodgii and B. tenusissima diverged to allow for some neutral fixations, thus revealing minor LSU rDNA sequence divergences. We consider that between A. saanichii and A. minutum there has likely been also not enough evolutionary time since diverge to fix changes at the rDNA level, in a way similar to that of B. dodgii and B. tenusissima.

4.4. Distribution of A. saanichii

The cyst stage is here only described by cyst-theca experiments from coastal British Columbia (Canada). We have found similar cysts over a long stretch of the NE Pacific (Fig. 1), and a relatively broad range of temperature (5–17 °C) and salinity (22–35 psu). A recent sediment trap study from Saanich Inlet (Price and Pospelova 2011) shows that the cyst of A. saanichii occurs throughout the year with slightly higher cyst fluxes in the winter months at temperatures between 5 and 10 °C and salinities between 23–28 psu, while the cyst of A. minutum sensu Yamaguchi et al. (2011) has the greatest flux during summer months (July–August) at a temperature between 15 and 19 °C and salinity around 29 psu. This suggests that A. saanichii has a preference for cooler temperatures and lowered salinities, and vice versa for A. minutum sensu Yamaguchi et al. (2011).

It is likely that the species abundance, like most heterotrophic dinoflagellates, is also determined by its prey availability, likely diatoms, ciliates, dinoflagellates and other protists (e.g. Jacobson and Anderson, 1986, 1992, 1996; Bockstahler and Coats, 1993; Hansen and Calado, 1999), which could be indirectly regulated by macronutrient availability. A similar relation has been proposed for the large heterotrophic cyst species Selenopemphix undulata (Verleye et al., 2011).

5. Conclusions

Archaeperidinium saanichii sp. nov. is described here from coastal British Columbia (Canada) through incubation experiments of a larger spiny brown cyst. The motile stage is characterized by pronounced asymmetrical intercalary plates, S.d. not touching the cingulum and its large size. We show that the theca of A. saanichii is different from other closely related species in the asymmetry of the intercalary plates and the size and the position of S.d. plate. We also show that the cyst morphology of this species is similar to both the cyst belonging to the motile stage of A. minutum as described by Ribeiro et al. (2010) and by Yamaguchi et al. (2011) (which we describe here), having a 2a archeopyle and aculate process tips, but can be distinguished in the size of archeopyle and body diameter, as well as the shape and number of processes. The LSU and SSU rDNA sequences show the close affiliation of A. saanichii to A. minutum, but are too conserved to distinguish the two species from one another. Accordingly, we provide a key to differentiate all species within the A. minutum complex. A. saanichii is suggested to have a preference for cooler temperatures and lowered salinities.

Acknowledgements

Kenneth Neil Mertens is a postdoctoral fellow of FWO Belgium and this research was partly conducted at Nagasaki University and was supported by a Kakenhi grant 22–00805. Aika Yamaguchi was supported by a postdoctoral research salary from the Assembling the Tree of Life grant (NSF #EF–0629624) and operating funds to B.S.L. from the National Science and Engineering Research Council of Canada (NSERC 283091–09) and the Canadian Institute for Advanced Research, Programs in Evolutionary Biology and Integrated Microbial Biodiversity. This research was partly supported by NSERC’s Discovery (224236) and Ship Time grants to Vera Pospelova. Andre Catrijsse (VLIZ, Belgium) is thanked for providing us with surface sediment samples from the North Sea which unfortunately did not contain any spiny brown cysts. One Effingham Inlet sediment trap sample was kindly provided by Dr. R. Timothy Patterson (Carleton University, Canada). The VENUS (Victoria Experimental Network Under the Sea) team is thanked for their assistance with collection of Saanich Inlet sediment trap material, and surface sediments from Site A in Patricia Bay. Surface sediment samples from the NE Pacific were provided by the Scripps Institution of Oceanography (SIO), Oregon State University (OSU), Monterey Bay Aquarium Research Institute (MBARI) and U.S. Geological Survey (USGSMP). The authors like to thank the editor, Andre Rochon and one anonymous reviewer for suggestions that significantly improved the paper.

Appendix A. Supplementary data

Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/10.1016/j.marmicro.2012.08.002. These data include Google maps of the most important areas described in this article.

References

